Satish Kumar Singh and Krishna Nand Singh*
Department of Chemistry, Banaras Hindu University, Varanasi-221005, India
*E-mail: knsinghbhu@yahoo.co.in
Received September 19, 2009
DOI 10.1002/jhet. 308
Published online 8 January 2010 in Wiley InterScience (www.interscience.wiley.com).

Glycine, a novel heterogeneous organocatalyst, is found to be highly effective for the synthesis of polyhydroquinoline derivatives in a one-pot multicomponent reaction via Hantzsch condensation under controlled microwave (MW) irradiation. The combination of glycine and MW has promising features for the reaction response, such as the shortest reaction time, excellent product yields, and simple workup of the products.
J. Heterocyclic Chem., 47, 194 (2010).

INTRODUCTION

Microwave (MW) irradiation has evolved as a powerful method to perform organic synthesis with great success, particularly in the light of the current paradigm shift to "green chemistry." It provides chemical processes with special attributes, such as enhanced reaction rates, higher yields of pure products, better selectivity, improved ease of manipulation, rapid optimization of reactions, and several eco-friendly advantages [1]. An important way to improve synthetic efficiency and to give access to a multitude of diversified molecules from simple building blocks is the development of multicomponent synthesis. Multicomponent reactions (MCRs) have recently taken a new dimension in organic synthesis, as they comply well with the requirements for ideal organic syntheses $[2,3]$. According to the current synthetic and environmental requirements, MCRs using MW methodology are of great interest.

Polyhydroquinoline derivatives have a great deal of importance because of their diverse medicinal applications, which include calcium channel activity, vasodilators, bronchodilators, antiatherosclerotics, hepatoprotective, antidiabetic, antihypertensive, neuroprotectant, platelet antiaggregatory activity, cerebral antischemic activity, and chemosensitizer activity [4-10]. Owing to the remarkable potential of these compounds as a source of valuable drugs, various methods have been reported using conditions such as conventional heating [11], solar
thermal energy [12], ionic liquid [13], TMSCl-NaI [14], metal triflates [15], grinding [16], Hy-Zeolite [17], montmorillonite $\mathrm{K}-10$ [18], cerium(IV) ammonium nitrate [19], iron(III) trifluoroacetate [20], $\mathrm{HClO}_{4}-\mathrm{SiO}_{2}$ [21], heteropoly acid [22], molecular iodine [23], PTSA [24], L-proline and derivatives [25], nickel [26], polymers [27], and Baker's yeast [28]. Most of these processes, however, suffer from one or other drawbacks such as longer reaction time, lower product yield, harsh conditions, high costs, and use of hazardous catalysts. As a result, an eco-safe and efficient alternative method for the preparation of polyhydroquinoline is highly desirable. As there is no report on the use of glycine as an organocatalyst in the Hantzsch condensation, we wish to demonstrate the catalytic activity of this organocatalyst in the synthesis of polyhydroquinolines.

RESULTS AND DISCUSSION

We report herein a benign, rapid, and efficient fourcomponent, one-pot synthesis of polyhydroquinolines in excellent yields using aromatic aldehydes, dimedone, ethyl acetoacetate, and ammonium acetate in the presence of catalytic amount of glycine ($10 \mathrm{~mol} \%$) in acetonitrile under monomode MW irradiation (Scheme 1).

To optimize the synthesis, a typical four-component reaction of benzaldehyde 1a, dimedone $\mathbf{2}$, ethyl acetoacetate $\mathbf{3}$, and ammonium acetate $\mathbf{4}$ was undertaken using

Scheme 1

a catalytic amount of different amino acids such as Lalanine, L-valine, and glycine in different solvents such as acetonitrile, ethanol, and water under varying reaction conditions to obtain the corresponding polyhydroquinoline derivative 5a (Table 1). Consistent with Table 1, the optimum yield (95\%) of product 5a was obtained in the presence of catalytic amount of glycine ($10 \mathrm{~mol} \%$) in solvent acetonitrile (entry 6) in 1 min under single-mode MW heating (180 W, $80^{\circ} \mathrm{C}$). Decreasing the catalyst levels, MW power or temperature reduced the product yield considerably (Table 1; Entries 13, 16, and 17). An increase in the molar proportion of catalyst, MW power, and temperature did not bring about any further increase in the product yield, rather, a bit diminution was observed (Table 1; entries $14,15,18$, and 19). It is assumed that the
acidic hydrogen of carboxylic function and the small size of glycine play a key role in the catalysis of the reaction. Under the optimized set of reaction conditions (entry 6), a number of aromatic aldehydes $\mathbf{1}$ were allowed to undergo MCR with 2, 3, and $\mathbf{4}$ in a molar ratio of $1: 1: 1: 1.2$ in the presence of glycine (10 mol $\%$) in acetonitrile under MW ($180 \mathrm{~W}, 80^{\circ} \mathrm{C}$) heating. The results are given in Table 2. All the electron-rich and electron-deficient aldehydes worked well leading to excellent yields of products.

After completion of the reaction, the resulting precipitate was filtered and recrystallized from methanol to yield pure substituted polyhydroquinolines 5a-5n. All the products were crystalline and fully characterized on the basis of their melting points, elemental analyses, and spectral data (IR, ${ }^{1} \mathrm{H}-\mathrm{NMR}$, and ${ }^{13} \mathrm{C}-\mathrm{NMR}$).

Table 1
Optimization of reaction conditions for the multicomponent synthesis of $\mathbf{4 a}$.

Entry	Catalyst ${ }^{\text {a }}$	Solvent	Reaction conditions					
			Room temperature		Reflux		Microwave ${ }^{\text {b }}$	
			Time (h)	Yield (\%)	Time (min)	Yield (\%)	Time (min)	Yield (\%)
1	-	Water	3.0	14	60	28	5	46
2	-	Ethanol	3.0	15	60	29	5	50
3	-	MeCN	3.0	15	60	32	5	54
4	Glycine	Water	1.0	54	30	61	1	75
5	Glycine	Ethanol	1.0	57	20	68	1	84
6	Glycine	MeCN	1.0	64	20	86	1	95
7	L-Alanine	Water	1.0	42	20	51	1	63
8	L-Alanine	Ethanol	1.0	46	20	58	1	72
9	L-Alanine	MeCN	1.0	52	20	66	1	78
10	L-Valine	Water	1.0	46	20	57	1	70
11	L-Valine	Ethanol	1.0	50	20	61	1	78
12	L-Valine	MeCN	1.0	56	20	72	1	86
13	Glycine	MeCN	1.0	57	30	79	3	87
14	Glycine	MeCN	1.0	64	30	84	2	95
15	Glycine	MeCN	1.0	63	30	80	2	93
16	Glycine	MeCN	-	-	-	-	3	89
17	Glycine	MeCN	-	-	-	-	3	88
18	Glycine	MeCN	-	-	-	-	2	93
19	Glycine	MeCN	-	-	-	-	2	95

[^0]Table 2
Glycine-catalyzed Hantzsch condensation to polyhydroquinoline derivatives. ${ }^{\text {a }}$

Product	Ar	Time (min)	Yield ${ }^{\text {b }}$ (\%)	$\mathrm{Mp}\left({ }^{\circ} \mathrm{C}\right)$	
				Obs	Lit
5a	$\mathrm{C}_{6} \mathrm{H}_{5}$	1	95	203-205	202-204 [15(a)]
5b	$4-\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4}$	1	96	259-260	260-261 [15(a)]
5c	$4-\mathrm{CH}_{3} \mathrm{OC}_{6} \mathrm{H}_{4}$	1	98	256-257	257-259 [15(a)]
5d	$4-\mathrm{ClC}_{6} \mathrm{H}_{4}$	2	97	246-248	245-246 [21]
5e	$3-\mathrm{ClC}_{6} \mathrm{H}_{4}$	2	94	192-193	-
5 f	$4-\mathrm{BrC}_{6} \mathrm{H}_{4}$	2	96	254-256	253-255 [15(a)]
5g	$3-\mathrm{BrC}_{6} \mathrm{H}_{4}$	2	93	235-237	234-236 [16]
5h	$4-\mathrm{FC}_{6} \mathrm{H}_{4}$	2	95	184-186	184-186 [15(a)]
5 i	$4-\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4}$	3	93	243-245	243-244 [21]
5j	$3-\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4}$	3	91	176-177	178-179 [21]
5k	4-OH-3- $\mathrm{CH}_{3} \mathrm{OC}_{6} \mathrm{H}_{3}$	2	94	211-213	211-212 [21]
51	4 - $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NC}_{6} \mathrm{H}_{4}$	2	95	232-233	229-231 [15(a)]
5m	2-Furyl	2	90	247-249	246-248 [15(a)]
5n	2,4- $\mathrm{Cl}_{2} \mathrm{C}_{6} \mathrm{H}_{3}$	2	94	243-245	242-244 [21]

${ }^{\text {a }}$ Microwave heating performed on 180 W power and $80^{\circ} \mathrm{C}$ temperature.
${ }^{\mathrm{b}}$ Isolated yield.

CONCLUSIONS

In conclusion, the present MW irradiation procedure provides an easy and efficient access to polyhydroquinolines via Hantzsch condensation using glycine as an organocatalyst. The mildness of the conversion, experimental simplicity, compatibility with various functional groups, excellent product yield, shorter reaction time, and the easy work-up procedure make this approach more attractive in synthesizing a variety of such derivatives.

EXPERIMENTAL

All the chemicals were procured from Aldrich, USA and E. Merck, Germany and were purified before use. IR spectra were recorded on a JASCO FT/IR-5300 spectrophotometer. NMR spectra were run on a JEOL AL300 FTNMR spectrometer; chemical shifts are given in $\delta \mathrm{ppm}$, relative to TMS as an internal standard. Elemental microanalysis was performed on Exeter Analytical Model CE-440 CHN analyzer. Melting points were measured in open capillaries and are uncorrected. The MW irradiation was effected using the CEM's Discover Bench Mate (magnetron frequency 2455 MHz) single-mode MW synthesis system using safe pressure regulation $10-\mathrm{mL}$ pressurized vials with "snap-on" cap.

General procedure for the synthesis of polyhydroquinolines 5. A mixture of aldehyde $1(1 \mathrm{mmol})$, dimedone 2 (1 mmol), ethyl acetoacetate $\mathbf{3}(1 \mathrm{mmol})$, ammonium acetate $\mathbf{4}$ $(1.2 \mathrm{mmol})$, glycine ($10 \mathrm{~mol} \%$), and acetonitrile (1 mL) was placed in a sealed pressure regulation $10-\mathrm{mL}$ pressurized vial with "snap-on" cap and was irradiated in the single-mode MW synthesis system at 180 W power and $80^{\circ} \mathrm{C}$ temperature for 1-3 min. After completion of reaction (TLC), the mixture was cooled and the resulting product was washed with cold water to remove any unreacted ammonium acetate. The crude
product was finally recrystallized from methanol to afford the pure products $\mathbf{5 a - 5 n}$.

Ethyl 2,7,7-trimethyl-5-oxo-4-phenyl-1,4,5,6,7,8-hexahydro-quinoline-3-carboxylate (5a). IR (KBr): 3289, 3080, 2961, 1699, $1612 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.26-$ $7.31(\mathrm{~m}, 2 \mathrm{H}), 7.17-7.22(\mathrm{~m}, 2 \mathrm{H}), 7.07-7.11(\mathrm{~m}, 1 \mathrm{H}), 5.85(\mathrm{~s}$, $1 \mathrm{H}), 5.05(\mathrm{~s}, 1 \mathrm{H}), 4.05(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.38(\mathrm{~s}, 3 \mathrm{H})$, 2.18-2.31 (m, 4H), $1.19(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.08(\mathrm{~s}, 3 \mathrm{H})$, 0.94 (s, 3H); ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$): $\delta=195.70$, 167.47, 148.72, 147.05, 143.67, 127.96, 127.83, 125.98, $111.92,105.93,59.78,50.72,40.85,36.55,32.64,29.41$, 27.08, 19.24, 14.17; Anal. Calcd. for $\mathrm{C}_{21} \mathrm{H}_{25} \mathrm{NO}_{3}$: C, 74.31 ; H, 7.42; N, 4.13; Found: C, 74.23; H, 7.48; N, 4.19.

Ethyl 4-(4-methylphenyl)-2,7,7-trimethyl-5-oxo-1,4,5,6,7,8-hexahydroquinoline-3-carboxylate (5b). IR ($\mathrm{KBr):} \mathrm{3276}$, 3078, 2960, 1702, $1646 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$): δ $=7.16(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.03(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 5.69(\mathrm{~s}$, $1 \mathrm{H}), 5.07(\mathrm{~s}, 1 \mathrm{H}), 4.09(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.37(\mathrm{~s}, 3 \mathrm{H}), 2.32$ (s, 3H), 2.16-2.29 (m, 4H), $1.23(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.06(\mathrm{~s}$, 3 H), $0.95(\mathrm{~s}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}$-NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=195.68$, $167.39,148.74,146.95,143.71,127.97,127.83,126.07$, $112.01,105.98,59.83,50.77,40.92,36.59,32.73,29.45$, 27.06, 19.81, 19.23, 14.16; Anal. Calcd. for $\mathrm{C}_{22} \mathrm{H}_{27} \mathrm{NO}_{3}$: C, 74.76; H, 7.70; N, 3.96; Found: C, 74.85; H, 7.66; N, 3.90.

Ethyl 4-(4-methoxyphenyl)-2,7,7-trimethyl-5-oxo-1,4,5,6,7,8-hexahydroquinoline-3-carboxylate (5c). IR (KBr): 3279, 3079, 2959, 1702, $1646 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR}$ ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=$ 7.21 (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}$), 6.73 (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}$), 5.75 (s, $1 \mathrm{H}), 4.99(\mathrm{~s}, 1 \mathrm{H}), 4.06(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.74(\mathrm{~s}, 3 \mathrm{H}), 2.37$ (s, 3H), 2.17-2.30 (m, 4H), $1.20(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.07(\mathrm{~s}$, 3H), 0.94 (s, 3H); ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$): $\delta=195.65$, $167.51,157.72,148.18,143.21,139.60,128.91,113.20$, $112.21,106.24,59.75,55.08,50.73,40.95,35.67,32.64$, 29.41, 27.13, 19.31, 14.21; Anal. Calcd. for $\mathrm{C}_{22} \mathrm{H}_{27} \mathrm{NO}_{4}$: C, 71.52; H, 7.37; N, 3.79; Found: C, 71.61; H, 7.40; N, 3.70.

Ethyl 4-(4-chlorophenyl)-2,7,7-trimethyl-5-oxo-1,4,5,6,7,8-hexahydroquinoline-3-carboxylate (5d). IR (KBr): 3274, 3206, 3085, 2938, 1705, $1606 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$):
$\delta=7.14-7.23(\mathrm{~m}, 2 \mathrm{H}), 7.05-7.11(\mathrm{~m}, 2 \mathrm{H}), 5.77(\mathrm{~s}, 1 \mathrm{H}), 5.02$ ($\mathrm{s}, 1 \mathrm{H}$), 4.05 (q, $J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.41(\mathrm{~s}, 3 \mathrm{H}), 2.16-2.37$ (m, $4 \mathrm{H}), 1.19(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.08(\mathrm{~s}, 3 \mathrm{H}), 0.94(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}-$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=195.64,167.31,149.20,144.53$, $133.55,129.11,128.08,126.23,111.14,105.12,59.79,50.67$, 40.64, 36.58, 32.59, 29.34, 27.01, 19.06, 14.13; Anal. Calcd. for $\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{ClNO}_{3}$: $\mathrm{C}, 67.46 ; \mathrm{H}, 6.47$; $\mathrm{N}, 3.75$; Found: C, 67.34; H, 6.52; N, 3.78.

Ethyl 4-(3-chlorophenyl)-2,7,7-trimethyl-5-oxo-1,4,5,6,7,8-hexahydroquinoline-3-carboxylate (5e). IR (KBr): 3274, 3202, 3074, 2934, 1704, $1605 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}-\mathrm{NMR}$ (300 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta=7.08-7.24(\mathrm{~m}, 4 \mathrm{H}), 5.78(\mathrm{~s}, 1 \mathrm{H}), 5.03(\mathrm{~s}, 1 \mathrm{H})$, 4.06 (q, $J=7.2 \mathrm{~Hz}, 2 \mathrm{H}$), 2.43 (s, 3H), 2.19-2.39 (m, 4H), $1.20(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.09(\mathrm{~s}, 3 \mathrm{H}), 0.95(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}$ ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=195.66,167.25,149.28$, 144.41, 133.53, 129.10, 128.05, 126.19, 111.11, 105.10, 59.78, 50.64, 40.61, 36.57, 32.55, 29.31, 27.04, 19.05, 14.13; Anal. Calcd. for $\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{ClNO}_{3}: \mathrm{C}, 67.46 ; \mathrm{H}, 6.47$; N, 3.75; Found: C, 67.51; H, 6.44; N, 3.70.

Ethyl 4-(4-bromophenyl)-2,7,7-trimethyl-5-oxo-1,4,5,6,7,8-hexahydroquinoline-3-carboxylate (5f). IR (KBr): 3274, 3205, 3072, 2955, 1702, $1604 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ $=7.18-7.23(\mathrm{~m}, 2 \mathrm{H}), 7.02-7.08(\mathrm{~m}, 2 \mathrm{H}), 6.56(\mathrm{~s}, 1 \mathrm{H}), 5.03(\mathrm{~s}$, $1 \mathrm{H}), 4.02-4.11(\mathrm{~m}, 2 \mathrm{H}), 2.34(\mathrm{~s}, 3 \mathrm{H}), 2.12-2.28(\mathrm{~m}, 4 \mathrm{H}), 1.22$ (t, $J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.08(\mathrm{~s}, 3 \mathrm{H}), 0.95(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}(75$ $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=195.38,167.76,148.87$, 145.69, 143.71, $131.03,129.73,111.14,106.05,59.79,50.67,40.64,36.28$, $32.59,29.34,27.01,19.16,14.15$; Anal. Calcd. for $\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{BrNO}_{3}$: C, 60.29 ; H, 5.78; N, 3.35; Found: C, 60.42 ; H, 5.71; N, 3.29.

Ethyl 4-(3-bromophenyl)-2,7,7-trimethyl-5-oxo-1,4,5,6,7,8-hexahydroquinoline-3-carboxylate (5g). IR (KBr): 3275, 3204, 3074, 2957, 1703, $1605 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ $=7.40(\mathrm{~s}, 1 \mathrm{H}), 7.21-7.26(\mathrm{~m}, 2 \mathrm{H}), 7.04-7.09(\mathrm{~m}, 1 \mathrm{H}), 6.60(\mathrm{~s}$, $1 \mathrm{H}), 5.02(\mathrm{~s}, 1 \mathrm{H}), 4.02-4.12(\mathrm{~m}, 2 \mathrm{H}), 2.35(\mathrm{~s}, 3 \mathrm{H}), 2.13-2.29$ $(\mathrm{m}, 4 \mathrm{H}), 1.21(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.07(\mathrm{~s}, 3 \mathrm{H}), 0.95(\mathrm{~s}, 3 \mathrm{H}) ;$ ${ }^{13} \mathrm{C}$-NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=195.56,167.16,149.08$, $144.00,131.04,129.25,126.87,122.02,111.42,105.43,59.90$, 50.67, 40.89, 36.63, 32.69, 29.36, 27.13, 19.31, 14.17; Anal. Calcd. for $\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{BrNO}_{3}: \mathrm{C}, 60.29$; $\mathrm{H}, 5.78$; N, 3.35; Found: C, 60.20; H, 5.83; N, 3.42.

Ethyl 4-(4-fluorophenyl)-2,7,7-trimethyl-5-oxo-1,4,5,6,7,8-hexahydroquinoline-3-carboxylate (5h). IR (KBr): 3287, 3209, 2960, 1697, $1615 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=$ $7.21-7.26(\mathrm{~m}, 2 \mathrm{H}), 6.89-7.03(\mathrm{~m}, 2 \mathrm{H}), 5.69(\mathrm{~s}, 1 \mathrm{H}), 5.11(\mathrm{~s}$, $1 \mathrm{H}), 4.07(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.35(\mathrm{~s}, 3 \mathrm{H}), 2.14-2.28(\mathrm{~m}$, $4 \mathrm{H}), 1.20(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.08(\mathrm{~s}, 3 \mathrm{H}), 0.94(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}-$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=195.65,167.55,153.72,149.27$, $144.60,138.63,129.51,112.17,106.25,59.84,50.78,40.97$, 36.12, 32.71, 29.42, 27.15, 19.31, 14.22; Anal. Calcd. for $\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{FNO}_{3}$: C, 70.57 ; H, 6.77; N, 3.92; Found: C, 70.46; H, 6.74; N, 3.88.

Ethyl 4-(4-nitrophenyl)-2,7,7-trimethyl-5-oxo-1,4,5,6,7,8-hexahydroquinoline-3-carboxylate (5i). IR (KBr): 3285, 3203, 3078, 2964, 1676, 1605, $1515 \mathrm{~cm}^{-1}$; ${ }^{1}$ H-NMR (300 MHz , CDCl_{3}): $\delta=8.07(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.47(\mathrm{~d}, J=8.4 \mathrm{~Hz}$, $2 \mathrm{H}), 5.75(\mathrm{~s}, 1 \mathrm{H}), 5.15(\mathrm{~s}, 1 \mathrm{H}), 4.04(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.42$ $(\mathrm{s}, 3 \mathrm{H}), 2.11-2.35(\mathrm{~m}, 4 \mathrm{H}), 1.17(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.09(\mathrm{~s}$, 3 H), 0.91 ($\mathrm{s}, 3 \mathrm{H}$); ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$): $\delta=195.38$, 166.82, 154.50, 148.88, 146.16, 144.48, 128.92, 123.28, $110.99,104.83,60.04,50.57,40.93,37.18,32.67,29.32$,
27.01, 19.37, 14.15; Anal. Calcd. for $\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{5}$: C, 65.61; H, 6.29; N, 7.29; Found: C, 65.56; H, 6.33; N, 7.37.

Ethyl 4-(3-nitrophenyl)-2,7,7-trimethyl-5-oxo-1,4,5,6,7,8-hexahydroquinoline-3-carboxylate (5j). IR (KBr): 3283, 3210, 3079, 2958, 1705, 1608, $1532 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}-\mathrm{NMR}$ (300 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta=8.10(\mathrm{~s}, 1 \mathrm{H}), 7.98(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.73(\mathrm{~d}, J$ $=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.35(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.88(\mathrm{~s}, 1 \mathrm{H}), 5.15(\mathrm{~s}$, $1 \mathrm{H}), 4.06(\mathrm{q}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.41(\mathrm{~s}, 3 \mathrm{H}), 2.12-2.36(\mathrm{~m}$, $4 \mathrm{H}), 1.19(\mathrm{t}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.10(\mathrm{~s}, 3 \mathrm{H}), 0.94(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}-$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=195.52,166.90,149.15,148.20$, $144.52,134.73,128.54,122.81,121.23,111.09,104.99,60.02$, 50.54, 40.84, 36.95, 32.70, 29.32, 27.02, 19.33, 14.13; Anal. Calcd. for $\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{5}$: C, 65.61; H, 6.29; N, 7.29; Found: C, 65.70; H, 6.34; N, 7.20.

Ethyl 4-(4-hydroxy-3-methoxyphenyl)-2,7,7-trimethyl-5-oxo-1,4,5,6,7,8-hexahydroquinoline-3-carboxylate (5k). IR (KBr): 3399, 3292, 2934, 1698, $1591 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR}$ (300 MHz, DMSO- $\left.d_{6}\right): \delta=8.99(\mathrm{~s}, 1 \mathrm{H}), 8.63(\mathrm{~s}, 1 \mathrm{H}), 6.69(\mathrm{~s}, 1 \mathrm{H})$, $6.49-6.58(\mathrm{~m}, 2 \mathrm{H}), 4.74(\mathrm{~s}, 1 \mathrm{H}), 4.40(\mathrm{q}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H})$, $2.50(\mathrm{~s}, 3 \mathrm{H}), 1.95-2.39(\mathrm{~m}, 7 \mathrm{H}), 1.16(\mathrm{t}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H})$, 1.01 (s, 3H), 0.88 (s, 3H); ${ }^{13} \mathrm{C}-\mathrm{NMR}$ (75 MHz , DMSO- d_{6}): δ $=194.49,167.10,149.39,146.78,144.49,139.10,119.59$, $114.98,112.03,110.22,104.14,59.05,55.49,50.35,35.07$, 32.16, 29.29, 26.42, 18.28, 14.28; Anal. Calcd. for $\mathrm{C}_{22} \mathrm{H}_{27} \mathrm{NO}_{5}: \mathrm{C}, 68.55$; H, 7.06; N, 3.63; Found: C, 68.61; H, 7.11; N, 3.58.

Ethyl 4-(4-dimethylaminophenyl)-2,7,7-trimethyl-5-oxo-1,4,5,6,7,8-hexahydroquinoline-3-carboxylate (5l). IR (KBr): 3280, 3207, 3079, 2954, 1700, $1607 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}-\mathrm{NMR}$ (300 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.15(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.59(\mathrm{~d}, J=8.7$ $\mathrm{Hz}, 2 \mathrm{H}), 5.70(\mathrm{~s}, 1 \mathrm{H}), 4.95(\mathrm{~s}, 1 \mathrm{H}), 4.06(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H})$, $2.87(\mathrm{~s}, 6 \mathrm{H}), 2.18-2.36(\mathrm{~m}, 7 \mathrm{H}), 1.22(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H})$, $1.07(\mathrm{~s}, 3 \mathrm{H}), 0.97(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=$ $195.56,167.65,148.97,147.59,142.75,135.81,128.58$, $112.47,106.55,59.72,50.76,40.94,35.29,32.70,29.41$, 27.33, 19.42, 14.25; Anal. Calcd. for $\mathrm{C}_{23} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O}_{3}$: C, 72.22; H, 7.91 ; N, 7.32; Found: C, 72.10; H, 7.95; N, 7.38.

Ethyl 4-(furan-2-yl)-2,7,7-trimethyl-5-oxo-1,4,5,6,7,8-hexa-hydroquinoline-3-carboxylate (5m). IR (KBr): 3287, 3220, 3086, 2932, 1675, $1605 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR}$ ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $=7.18(\mathrm{~s}, 1 \mathrm{H}), 6.20(\mathrm{~s}, 1 \mathrm{H}), 6.00(\mathrm{~s}, 1 \mathrm{H}), 5.89(\mathrm{~s}, 1 \mathrm{H}), 5.25$ $(\mathrm{s}, 1 \mathrm{H}), 4.12-4.16(\mathrm{~m}, 2 \mathrm{H}), 2.19-2.39(\mathrm{~m}, 7 \mathrm{H}), 1.25(\mathrm{t}, J=$ $6.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.10(\mathrm{~s}, 3 \mathrm{H}), 1.02(\mathrm{~s}, 3 \mathrm{H}){ }^{13} \mathrm{C}-\mathrm{NMR}(75 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta=195.57,167.34,157.94,150.61,144.26,140.85$, $111.13,105.03,103.07,59.83,50.63,36.88,32.48,29.71$, 27.03, 19.08, 14.17; Anal. Calcd. for $\mathrm{C}_{19} \mathrm{H}_{23} \mathrm{NO}_{4}$: C, 69.28 ; H, 7.04; N, 4.25; Found: C, 69.17; H, 7.10; N, 4.28.

Ethyl 4-(2,4-dichlorophenyl)-2,7,7-trimethyl-5-oxo-1,4,5,6,7,8-hexahydroquinoline-3-carboxylate (5n). IR (KBr): 3287, 3204, 3088, 2936, 1703, $1607 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$): δ $=7.30(\mathrm{~d}, 1 \mathrm{H}), 7.22(\mathrm{~s}, 1 \mathrm{H}), 7.10(\mathrm{~d}, 1 \mathrm{H}), 6.13(\mathrm{~s}, 1 \mathrm{H}), 5.23$ $(\mathrm{s}, 1 \mathrm{H}), 3.97-4.06(\mathrm{~m}, 2 \mathrm{H}), 2.38(\mathrm{~s}, 3 \mathrm{H}), 2.18-2.36(\mathrm{~m}, 4 \mathrm{H})$, $1.18(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.07(\mathrm{~s}, 3 \mathrm{H}), 0.94(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}$ $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=195.41,167.23,149.38,142.42$, 133.67, 132.78, 132.04, 129.13, 126.86, 111.13, 104.59, 60.11, 50.58, 41.07, 32.73, 29.12, 27.37, 19.11, 14.17; Anal. Calcd. for $\mathrm{C}_{21} \mathrm{H}_{23} \mathrm{Cl}_{2} \mathrm{NO}_{3}: \mathrm{C}, 61.77 ; \mathrm{H}, 5.68 ; \mathrm{N}, 3.43$; Found: C, 61.84; H, 5.71; N, 3.39.

Acknowledgments. The authors are thankful to the Department of Biotechnology, New Delhi, for financial assistance.

REFERENCES AND NOTES

[1] (a) Caddick, S.; Fitzmaurice, R. Tetrahedron 2009, 65, 3325; (b) Kappe, C. O. Angew Chem Int Ed 2004, 43, 6250; (c) Dallinger, D.; Kappe, C. O. Chem Rev 2007, 107, 2563; (d) Tierney, J. P.; Lidstrom, P. Microwave Assisted Organic Synthesis; Blackwell: Oxford, UK, 2005; p 1; (e) Kappe, C. O.; Stadler, A. Microwaves in Organic and Medicinal Chemistry; Wiley-VCH Verlag GmbH \& Co.: Weinheim, 2005; p 1.
[2] (a) Zhu, J.; Bienayme, H. Multicomponent Reactions; Wiley-VCH Verlag GmbH \& Co.: Weinheim, 2005; p 1; (b) Ganem, B. Acc Chem Res 2009, 42, 463; (c) Orru, R. V. A.; de Greef, M. Synthesis 2003, 1471; (d) Syamal, M. Org Prep Proc Int 2009, 41, 1; (e) Jiang, B.; Yang, C.-G.; Wang, J. J Org Chem 2001, 66, 4865.
[3] (a) Domling, A.; Ugi, I. Angew Chem Int Ed 2000, 39, 3168; (b) Jimenez-Abnso, S.; Chavez, H.; Estevez-Braan, A.; Ravelo, A.; Feresin, G.; Tapia, A. Tetrahedron 2008, 64, 8938; (c) Ramon, D. J.; Yus, M. Angew Chem Int Ed 2005, 44, 1602.
[4] Mannhold, R.; Jablonka, B.; Voigdt, W.; Schoenafinger, K.; Schravan, K. Eur J Med Chem 1992, 27, 229.
[5] Bossert, F.; Meyer, H.; Wehinger, E. Angew Chem Int Ed 1981, 20, 762.
[6] Nakayama, H.; Kasoaka, Y. Heterocycles 1996, 42, 901.
[7] Klusa, V. Drugs Future 1995, 20, 135.
[8] Bretzel, R. G.; Bollen, C. C.; Maeser, E.; Federlin, K. F. Am J Kidney Dis 1993, 21, 53.
[9] Bretzel, R. G.; Bollen, C. C.; Maeser, E.; Federlin, K. F. Drugs Future 1992, 17, 465.
[10] Boer, R.; Gekeler, V. Drugs Future 1995, 20, 499.
[11] (a) Sufirez, M.; Ochoa, E.; Verdecia, Y.; Verdecia, B.; Moran, L.; Martin, N.; Quinteiro, M.; Seoane, C.; Soto, J. L.; Novoa, H.; Blaton, N.; Peters, O. M. Tetrahedron 1999, 55, 875; (b) Suresh; Kumar, D.; Sandhu, J. S. Synth Commun 2009, 39, 1957.
[12] Mekheimer, R. A.; Hameed, A. A.; Sadek, K. U. Green Chem 2008, 10, 592.
[13] (a) Ji, S. J.; Jiang, Z. Q.; Lu, J.; Loa, T. P. Synlett 2004, 831; (b) Zhang, X. Y.; Li, Y. Z.; Fan, X. S.; Qu, G. R.; Hu, X. Y.; Wang, J. J Chin Chem Lett 2006, 17, 150.
[14] Sabitha, G.; Reddy, G. S. K.; Reddy, C. S.; Yadav, J. S. Tetrahedron Lett 2003, 44, 4129.
[15] (a) Wang, L. M.; Sheng, J.; Zhang, L.; Han, J. W.; Fan, Z. Y.; Tian, H.; Qian, C. T. Tetrahedron 2005, 61, 1539; (b) Donelson, J. L.; Gibbs, A.; De, S. K. J Mol Catal A: Chem 2006, 256, 309.
[16] Kumar, S.; Sharma, P.; Kapoor, K. K.; Hundal, M. S. Tetrahedron 2008, 64, 536.
[17] Das, B.; Ravikanth, B.; Ramu, R.; Rao, V. B. Chem Pharm Bull 2006, 54, 1044.
[18] Song, G.; Wang, B.; Wu, X.; Kang, Y.; Yang, L. Synth Commun 2005, 35, 2875.
[19] Reddy, C. S.; Raghu, M. Chin Chem Lett 2008, 19, 775.
[20] Adibi, H.; Samimi, H. A.; Beygzadeh, M. Catal Commun 2007, 8, 2119.
[21] Maheswara, M.; Siddaiah, V.; Damu, G. L. V.; Rao, C. V. Arkivoc 2006, 2, 201.
[22] (a) Heravi, M. M.; Bakhtiri, K.; Javadi, N. M.; Bamoharram, F. F.; Saeedi, M.; Oskooi, H. A. J Mol Catal A: Chem 2007, 264, 50; (b) Nagarapu, L.; Apuri, S.; Gaddam, S.; Bantu, R.; Mahankhali, V. C.; Kantevari, S. Lett Org Chem 2008, 5, 60.
[23] Ko, S.; Sastry, M. N. V.; Lin, C.; Yao, C.-F. Tetrahedron Lett 2005, 46, 5771.
[24] Cherkupally, S. R.; Mekalan, R. Chem Pharm Bull 2008, 56, 1002.
[25] (a) Evans, C. G.; Gestwicki, J. E. Org Lett 2009, 11, 2957; (b) Kumar, A.; Maurya, R. A. Tetrahedron 2007, 63, 1946.
[26] Sapkal, S. B.; Shelke, K. F.; Shingate, B. B.; Shingare, M. Tetrahedron Lett 2009, 50, 1754.
[27] (a) Breitenbucher, J. G.; Figliozzi, G. Tetrahedron Lett 2000, 41, 4311; (b) Dondoni, A.; Massi, A.; Minghini, E.; Bertolasi, V. Tetrahedron 2004, 60, 2311.
[28] Kumar, A.; Maurya, R. A. Tetrahedron Lett 2007, 48, 3887.

[^0]: ${ }^{\text {a }}$ Catalyst concentration $10 \mathrm{~mol} \%$ except for entries $13(5 \mathrm{~mol} \%), 14(15 \mathrm{~mol} \%)$, and $15(20 \mathrm{~mol} \%)$.
 ${ }^{\mathrm{b}}$ Microwave heating performed on 180 W power and $80^{\circ} \mathrm{C}$ temperature except for entries $16\left(120 \mathrm{~W}, 80^{\circ} \mathrm{C}\right), 17\left(180 \mathrm{~W}, 50^{\circ} \mathrm{C}\right), 18(250 \mathrm{~W}$, $\left.80^{\circ} \mathrm{C}\right)$, and $19\left(180 \mathrm{~W}, 100^{\circ} \mathrm{C}\right)$.

